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Abstract. In the present paper, by expedient assumptions and using the meaning
of measure of non-compactness and essential fixed point theorems such as Darbo’s
theorem, we present an existence of solutions for some nonlinear functional integral
equations on C[0, T ]. Our existence results subtend many key integral and functional
equations that emerge in nonlinear analysis and its applications. We show applications
of the obtained results for specific scenarios of known equations.
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1. Introduction

Some problems investigated in the vehicular traffic theory, queuing theory, bi-
ology and etc., lead to functional integral equations, see [7, 13]. For instance,
the most important frequently considered integral equations, in linear or its
nonlinear counterparts cases, are the Hammerstein integral equation and its
generalization the Urysohn integral equation.

In this study, we discuss on some of these equations in the following general
form:

(1) φ(t) = ψ(t, φ(t)) +

∫ t

0
ρ(t, τ, φ(τ))dτ,

where t ∈ [0, T ]. Many important integral equations, for example; the nonlinear
Volterra integral equations such as the Urysohn type integral equation, which
were considered in many papers and monographs [7, 11, 13, 14], are especial cases
of Eq. (1). The main tool for study on existence of solutions for functional inte-
gral equations (1) is the fixed point theorem which satisfies the Darbo condition
[1, 2, 8, 9], with respect to a measure of non-compactness in the Banach algebra
of continuous functions on the interval [0, T ]. Fixed point theorems have many
important applications in nonlinear analysis literature [1, 9, 12, 10, 15].
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The rest of this paper is organized as follows. Section 2 is devoted to collect
some definitions and auxiliary results, which will be used in this work. In
Section 3, applying the technique associated with measure of non-compactness,
we prove an existence theorem for Eq. (1). In the last section, we present
some examples that verify the application of our reviewed results for nonlinear
functional integral equations.

2. Notation and auxiliary facts

We recall some basic definitions and properties of measure of non-compactness
[2, 3, 5, 6, 8], which are utilized for obtaining our main results.

Definition 1. Let (X, d) be a complete metric space and B the family of nonempty
and bounded subsets of X. A function ξ, defined on B in R+ = [0,∞), is called
the measure of non-compactness on X if ξ(co(B)) = ξ(B) for all bounded subsets
B ∈ B, where co(B) denotes the convex closure of B.

For B,B1,B2 ∈ B, the measure of non-compactness ξ is said to be:

1. Monotone: if B1 ⊆ B2 implies ξ(B1) ⊆ ξ(B2);

2. Regular: if ξ(B) = 0 is equivalent to the relative compactness of B in X;

3. Nonsingular: if ξ(B) = 0 for every finite set B;

4. Semi-additive: if ξ(B1 ∪ B2) = max{ξ(B1), ξ(B2)}.

As an example of a measure of non-compactness, possessing all above prop-
erties, we may consider the non-compactness measure of Hausdorff ξ1 defined
on B ∈ B as follows,

ξ1(B) = inf{ε > 0 : B can be covered by a finite number of balls with radii ≤ ε}.

Without confusion, the Kuratowski measure of non-compactness ξ2 defined by

ξ2(B) = inf{ε > 0 : B can be covered by finitely many sets with diameter ≤ ε},

where the diameter of Bi is defined by diamBi = sup{|b1 − b2| : b1, b2 ∈ Bi}, i =
1, 2, . . . ,m.
It is well-known that the Kuratowski measure of non-compactness ξ2, verifies
properties 1-4, as well as the Hausdorff measure of non-compactness.

If X is a Banach space, then for the Kuratowski or Hausdorff measure of
non-compactness ξ, we also have:

5. Semi-homogeneity: ξ(αB) = |α|ξ(B), where α ∈ R and αB = {αb : b ∈
B};

6. Algebraic semi-additivity: ξ(B1 + B2) ≤ ξ(B1) + ξ(B2), where B1 + B2 =
{b1 + b2 : b1 ∈ B1, b2 ∈ B2};
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7. Lipschitzianity: |ξ(B1) − ξ(B2)| ≤ Lξdl(B1,B2), where Lξ1 = 1, Lξ2 = 2
and dl(B1,B2) denotes the Hausdorff metric of B1 and B2, i.e.

dl(B1,B2) = max{sup
t∈B2

d(t,B1), sup
t∈B1

d(t,B2)},

here d(., .) is the distance from an element of X to a set of X;

8. Continuity: for every B ∈ B and for all ε > 0, there is δ > 0 such that
|ξ(B)− ξ(B1)| < ε for all B1 satisfying dl(B,B1) < δ.

Theorem 1. The relationship of the Hausdorff measure of non-compactness ξ1,
and the Kuratowski measure of non-compactness ξ2, on B ∈ B is

ξ1(B) ≤ ξ2(B) ≤ 2ξ1(B).

The expressed property allows us to characterize solutions of Eq. (1), and will be
used in the next section. Further facts concerning measures of non-compactness
and their properties may be found in [2, 5].

Theorem 2 (Darbo fixed point theorem) ([2, 9]). Let D ̸= ∅ be a bounded,
closed and convex subset of a Banach space X, ξ2 be the Kuratowski measure of
non-compactness on X and suppose that Λ : D → D is a continuous operator
such that there exists a constant η ∈ [0, 1) with ξ2(ΛΦ) ≤ ηξ2(Φ) for all Φ ∈ D.
Then Λ has a fixed point in D.

In what follows, we will work in the classical Banach space C[0, T ], consisting
of the all real and continuous functions defined on the interval [0, T ]. This space
is equipped with the standard(uniform) norm

∥x∥ = sup{|x(t)| : t ∈ [0, T ]}.

Obviously, the space C[0, T ] also has the structure of a Banach algebra.

Now, we present the definition of a special measure of non-compactness in
C[0, T ] which will be used in the sequel, a measure that was introduced and
studied in [4, 11]. To do this, let us fix a subset Φ belong to the family of all
nonempty and bounded subsets of C[0, T ]. For ε > 0 and φ ∈ Φ denote by
µ(φ, ε) the modulus of continuity of φ defined by

µ(φ, ε) = sup{|φ(t1)− φ(t2)| : |t1 − t2| ≤ ε, t1, t2 ∈ [0, T ]}.

Further, we set

µ(Φ, ε) = sup{µ(φ, ε) : φ ∈ Φ},

µ0(Φ) = lim
ε−→0

µ(Φ, ε),

the function µ0(Φ) is a regular measure of non-compactness in the space C[0, T ].



176 LEILA TORKZADEH

3. Main result

According to the announcement given in the Introduction, we study the solv-
ability of the nonlinear functional integral equations (1) for φ ∈ C[0, T ]. The
assumptions are formulated for Eq. (1), namely, we assume the following hy-
potheses.

(H1) ψ : [0, T ]×R −→ R is continuous and there exist nonnegative constants
β such that |ψ(t, 0)| ≤ β, for t ∈ [0, T ]. Also, exists the continuous function
ψ1 : [0, T ] −→ [0, T ] such that

|ψ(t, φ1)− ψ(t, φ2)| ≤ ψ1(t)|φ1 − φ2|,

and let κ = max{|ψ1(t)| : t ∈ [0, T ]}.
(H2) ρ(t, τ, φ) : [0, T ] × [0, T ] × R −→ R is continuous and satisfies in

sublinear condition, i.e.
|ρ(t, τ, φ)| ≤ γ + δ|φ|,

for γ, δ ∈ R+, t, τ ∈ [0, T ] and φ ∈ R.

(H3) κ < 1− δT .

Theorem 3. Under the tacit assumptions (H1) − (H3) above, Eq. (1) has at
least one solution in the Banach algebra C = C[0, T ].

Proof. To prove this result, we need to define operators Λ on the space C[0, T]
in the following way

(Λφ)(t) = ψ(t, φ(t)) +

∫ t

0
ρ(t, τ, φ(τ))dτ.

So, Λ transforms the Banach algebra C[0, T ] into itself. Let us fix φ ∈ C[0, T ],
then using our assumptions for t ∈ [0, T ], we get

|(Λφ)(t)| =

∣∣∣∣ψ(t, φ(t)) + ∫ t

0
ρ(t, τ, φ(τ))dτ

∣∣∣∣
≤ |ψ(t, φ(t))− ψ(t, 0)|+ |ψ(t, 0)|+

∣∣∣∣∫ t

0
ρ(t, τ, φ(τ))dτ

∣∣∣∣
≤ κ|φ(t)|+ β +

∣∣∣∣∫ t

0
ρ(t, τ, φ(τ))dτ

∣∣∣∣
≤ κ|φ(t)|+ β + T (γ + δ|φ(t)|)
≤ (κ+ δT )|φ|+ (β + γT ).

Obviously, in view of the assumptions (H1) − (H3), we have β + γT < ∞ and
κ + δT < 1, also the operator Λ transforms Br into it self for r = β+γT

1−(κ+δT ) .

Where Br(θ) denotes the closed ball with radius r centered at θ as the zero
element of C[0, T ].
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Next, we show that the operator Λ is continuous on the ball Br(θ). To do
this, fix ε > 0 and take arbitrary φ1, φ2 ∈ Br(θ) such that ∥φ1 − φ2∥ ≤ ε. Then
for t ∈ [0, T ], we get

|(Λφ1)(t)− (Λφ2)(t)| =
∣∣∣ψ(t, φ1(t)) +

∫ t

0
ρ(t, τ, φ1(τ))dτ − ψ(t, φ2(t))

−
∫ t

0
ρ(t, τ, φ2(τ))dτ

∣∣∣
≤ κ|φ1 − φ2|+

∫ t

0
|ρ(t, τ, φ1(τ))− ρ(t, τ, φ2(τ))|dτ

≤ κε+ T · µ(ρ, ε),

where

µ(ρ, ε)= sup{|ρ(t, τ, φ1)−ρ(t, τ, φ2)| : |φ1−φ2| ≤ ε, φ1, φ2 ∈ [−r, r], t, τ ∈ [0, T ]}.

On the other hand, using the uniformly continuous of the function ρ = ρ(t, τ, φ)
on the bounded subset [0, T ] × [0, T ] × [−r, r], we infer that µ(ρ, ε) −→ 0 as
ε −→ 0. Thus, the above assessment shows that the operator Λ is continuous on
Br(θ).

Now, we prove that the operator Λ satisfies the Darbo condition with respect
to the measure µ0, defined in Section 2, on the ball Br(θ). Take a nonempty
subset Φ of Br(θ) and φ ∈ Φ, then for a fixed ε > 0 and t1, t2 ∈ [0, T ] such that,
without loss of generality, we may assume that t1 ≤ t2 and t2−t1 ≤ ε, we obtain

|(Λφ)(t2)− (Λφ)(t1)|

=
∣∣∣ψ(t2, φ(t2)) + ∫ t2

0
ρ(t2, τ, φ(τ))dτ − ψ(t1, φ(t1))

−
∫ t1

0
ρ(t1, τ, φ(τ))dτ

∣∣∣
≤ |ψ(t2, φ(t2))− ψ(t2, φ(t1))|+ |ψ(t2, φ(t1))− ψ(t1, φ(t1))|

+

∣∣∣∣∫ t2

0
ρ(t2, τ, φ(τ))dτ −

∫ t1

0
ρ(t1, τ, φ(τ))dτ

∣∣∣∣
≤ κ|φ(t2)− φ(t1)|+ µψ(ε, .)

+

∣∣∣∣∫ t1

0

(
ρ(t2, τ, φ(τ))− ρ(t1, τ, φ(τ))

)
dτ +

∫ t2

t1

ρ(t2, τ, φ(τ))dτ

∣∣∣∣
≤ κ|φ(t2)− φ(t1)|+ µψ(ε, .) + Tµρ(ε, ., .) +Mε.(2)

For simplicity, we employ of the following notations

µψ(ε, .) = sup
{
|ψ(t, φ)− ψ(t̂, φ)| : φ ∈ [−r, r], |t− t̂| ≤ ε, t, t̂ ∈ [0, T ]

}
,

µρ(ε, ., .) = sup
{
|ρ(t, τ, φ)− ρ(t̂, τ, φ)| : φ ∈ [−r, r], |t− t̂| ≤ ε, t, t̂, τ ∈ [0, T ]

}
,

M = sup {|ρ(t, τ, φ)| : φ ∈ [−r, r], t, τ ∈ [0, T ]} .
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Then, using relation (2), yields

µ(Λφ, ε) ≤ κµ(φ, ε) + µψ(ε, .) + Tµρ(ε, ., .) +Mε.

As in because our assumptions, we conclude that the functions ψ = ψ(t, φ),
ρ = ρ(t, τ, φ) are uniformly continuous on the sets [0, T ]×R and [0, T ]×[0, T ]×R,
respectively. Hence, we figure out µψ(ε, .) −→ 0, and µρ(ε, ., .) −→ 0 as ε −→ 0.
Consequently, we get

(3) µ0(ΛΦ) ≤ κµ0(Φ).

Finally, we understand the operator Λ satisfies the Darbo condition on Br(θ)
respect to the measure µ0 with constant κ. Also, under the assumption (H3),
we know that κ < 1 and operator Λ is a contraction on Br(θ) with respect to
µ0. Therefore, applying Theorem 2 we conclude that Λ has at least one fixed
point in Br(θ). Consequently, functional integral equations (1) has at least one
solution in Br(θ). This completes the proof.

4. Applications

In this section, we present some examples of the classical integral and functional
equations considered in nonlinear analysis, which are particular cases of Eq. (1)
and consequently, the existence of their solutions can be established using The-
orem 3.

Example 1. Setting ψ(t, s) = f(t), Eq. (1) reduces to the well-known nonlinear
Volterra-Urysohn integral equation

(4) φ(t) = f(t) +

∫ t

0
ρ(t, τ, φ(τ))dτ.

The equation of this type appears in many applications. For example, it can be
applied in modeling the some problems in engineering, economics and physics.
Also, a lot of problems considered in the theory of partial differential equations
lead us to the Urysohn integral equation.

Example 2. In Eq. (4) if we set ρ(t, τ, φ(τ)) = k(t, τ)v(τ, φ(τ)), a nonlinear
integral equation will be appeared known as the Hammerstein type. Solution of
many problems in mathematical physics, control theory, the dynamic model of
chemical reactor, and studying of an elliptic partial differential equation with
nonlinear boundary conditions, encounter with this equation type.

Example 3. This example shows that in general the assumptions of our exis-
tence Theorem 3, can be easily verified in objective situations. For the following
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functional integral equations

φ(t) =
t2

4
exp(−t) +

∫ t

0

(t− τ)2

4
exp (τ − t)φ(τ)dτ,

φ(t) =
√
t+ 0.1− t sin t+

∫ t

0

sin tφ2(τ)

(
√
τ + 0.1)

2dτ,

φ(t) =
1

3
sin(3φ(t)) +

t

t3 − 1

∫ t

0

exp(−tτ + τ2φ5(τ))

1 + φ2(τ)
dτ,

φ(t) = cos(tφ(t)) +

∫ t

0

(
ln(τt2φ2(τ))− tan−1(τ + 2t2 + φ2(τ))

5−
√

| sin(φ(τ))|

)
dτ,

the hypothesis of Theorem 3 are satisfied.
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